import { keys, filter, sum, mean, map, curry } from "ramda"
import isNumeric from "./internal/isNumeric"
import getCol from "./getCol"
/**
* Calculate std for grouped objects.
*
* Use it on groupBy objects - the output of Z.groupBy() - to analyze groups.
*
* @func
* @memberOf Z
* @category Analysis
* @param {String} col Column within the groups to be analyzed
* @param {Object} groupByObj Object grouped by a column
* @return {df} Dataframe with the calculated statistics
* @see Z.groupBy, Z.gbMin, Z.gbMax, Z.gbCount, Z.gbSum, Z.gbMean, Z.gbDescribe
* @example
*
* const df = [{"label": "A", "value": 7}, {"label": "A", "value": 3}, {"label": "B", "value": 2}, {"label": "B", "value": 5}, {"label": "C", "value": 75}]
* Z.gbStd("value", Z.groupBy(d => d.label, df))
* // [{"group": "A", "std": 2.8284271247461903}, {"group": "B", "std": 2.1213203435596424}, {"group": "C", "std": NaN}]
*/
const gbStd = curry((col, groupByObj) => {
const groups = keys(groupByObj)
const result = groups.map(g => {
const arr = filter(isNumeric, getCol(col, groupByObj[g]))
const avg = mean(arr)
const arrSquaredDiffs = map(x => (x - avg) ** 2, arr)
const sumSquaredDiffs = sum(arrSquaredDiffs)
return { group: g, std: Math.sqrt(sumSquaredDiffs / (arr.length - 1)) }
})
return result
})
export default gbStd