import merge from "./merge"
import gbMin from "./gbMin"
import gbMax from "./gbMax"
import gbCount from "./gbCount"
import gbSum from "./gbSum"
import gbMean from "./gbMean"
import gbStd from "./gbStd"
import { curry } from "ramda"
/**
* Describe grouped objects.
*
* Use it on groupBy objects - the output of Z.groupBy() - to analyze groups.
*
* @func
* @memberOf Z
* @category Analysis
* @param {String} col Column within the groups to be analyzed
* @param {Object} groupByObj Object grouped by a column
* @return {df} Dataframe with the calculated statistics
* @see Z.groupBy, Z.gbStd, Z.gbMin, Z.gbCount, Z.gbSum, Z.gbMean, Z.max
* @example
*
* const df = [{"label": "A", "value": 7}, {"label": "A", "value": 3}, {"label": "B", "value": 2}, {"label": "B", "value": 5}, {"label": "C", "value": 75}]
* Z.gbDescribe("value", Z.groupBy(d => d.label, df))
* // [
* // { count: 2, group: "A", max: 7, mean: 5, min: 3, std: 2.8284271247461903, sum: 10 },
* // { count: 2, group: "B", max: 5, mean: 3.5, min: 2, std: 2.1213203435596424, sum: 7 },
* // { count: 1, group: "C", max: 75, mean: 75, min: 75, std: NaN, sum: 75 },
* // ]
*/
const gbDescribe = curry((col, groupByObj) => {
const mins = gbMin(col, groupByObj)
const maxes = gbMax(col, groupByObj)
const counts = gbCount(col, groupByObj)
const sums = gbSum(col, groupByObj)
const means = gbMean(col, groupByObj)
const stds = gbStd(col, groupByObj)
const df1 = merge(mins, maxes, "group", "group", "--", "--")
const df2 = merge(df1, counts, "group", "group", "--", "--")
const df3 = merge(df2, sums, "group", "group", "--", "--")
const df4 = merge(df3, means, "group", "group", "--", "--")
const df5 = merge(df4, stds, "group", "group", "--", "--")
return df5
})
export default gbDescribe